HOT TOPICS: Customer Experience Marketing Automation Social Business SharePoint 2013 Document Management Big Data Mobile DAM

Don't Put Your Audience to Sleep: Why Analytics Presentations Fail

Don't Put Your Audience to Sleep: Why Analytics Presentations FailYou've made your PowerPoint. You've compiled tons of data and examined it from every angle. But as you are presenting, people's eyes glaze over. Why did your presentation fall flat?

I wanted to wade a little deeper into the unpredictable world of presenting analytics data effectively. Last month I discussed four techniques for improving presentations to senior executives. Today, I’m going to share six reasons I see presentations fall off the rails and self-destruct. If you think analytics is more art than science, presenting analytics data is even more so.

1. Too Much Data

You want to bring your audience along as you experienced the analysis from start to finish. You provide screen shots of the query results, roughly 60-100 slides of chart images culled from the analytics data. You present your findings, conclusions and recommendations at points where you’ve concluded an analysis.

Your audience wants to hear your recommendations as soon as possible. They trust that you know what you’re doing. Pages of data will put them to sleep — or make them antsy and irritated.

Antidote: Think like a journalist and use the “pyramid” approach to your presentation style. That means that you start with recommendations at the beginning of the deck — an Executive Summary in the first five-10 slides — a mini-presentation that can stand on its own. Don’t bury the lead in the depths of the presentation. If you want to provide all of the data to back up your recommendation, then use an appendix that can be referenced after the fact.

2. Passive Slide Titles

You try to organize the presentation logically and in order. You carefully write presentation sections and titles with descriptive headlines that accurately tell your audience what is in each section and slide, like Key Findings, or Recommendations or Data Descriptions or Visitor LifeCycle or Campaign Comparison. The actual recommendations that you have, or point of view that you wish to convey is located in the middle or lower part of the text, maybe following an observation, maybe buried under percentage comparisons that lead up to this recommendation.

Your audience doesn’t want to have to read through the slide to unearth the key takeaway. They don’t care so much about the data analysis as the perspective and smarts that you bring to the discussion — that’s why you have your job in the first place.

Antidote: Think like a Mad Men era print ad copywriter. Start with a headline that provides a point of view, a benefit, something that attracts attention. There is no need to prepare the audience with a signpost that says "I’m going to give you the recommendation," just give it to them in the headline. Highly Engaged Segment X has Greatest Potential for Market Growth says something to pique interest, Key Recommendations doesn’t. If you want to create analysis from data that is actionable and interesting, make it clear to your audience that it indeed is. Don’t make them work hard to figure it out.

3. Metrics That Don’t Add Up

You include a detailed explanation of what you observed in your analysis so it's clear that your findings accurately reflect the state of the website or content section. You provide screen shots of the site to show site visitor interaction. You add observations, like “time between visits is spread out over x days” or “50 percent of visitors did not visit the day after a visit in which they placed an order.” You think it is important for your audience to understand how you reached your conclusion through the compilation of the separate queries you performed and the deductions you made.

Your audience doesn’t understand how this helps them figure out the business problem that they gave you to solve. It might help you figure out the answer, but for the audience, it’s like watching sausage get made.

Antidote: Think like a storyteller. Use the strong headline you created as your lead. Only put the key data points and visuals that will support the headline into the rest of the slide.

4. Overstuffed Slides

You want to present all of the great findings that you have culled from the data. You list all of them out — 10 points on one slide, or five points with explanations in 12 point type — so the audience can take them in and slowly digest them. You also have slides that provide lots of important information on data anomalies and reasons why the data may have variances. This is all critical because it makes sure everyone appreciates the accuracy of the data.

Your audience sees a slide with more text than they can read. It blends together. Their eyes glaze over. They are interested in being told what to do with the data. They want to get to the bottom line.

Antidote: If you have only a handful of strong recommendations or perspectives then run with those. If you want to provide background info about the data itself, or the techniques that you have used in your analysis if it is absolutely critical, do a quick summary on one slide and mention it in passing. Spending time on content that isn’t central to your recommendations is just a distraction to the audience.

 

Continue reading this article:

 
 
 
Useful article?
  Email It      

Tags: , , , , , , , ,
 
 

Resources

 

Featured Events  View All Events | Add Your Event | feed Events RSS