Three Rs of Predictive AnalyticsWith all of the coverage these days around analytics and big data, it makes you wonder why every business -- large and small -- isn't embracing predictive analytics?

Two recent conversations reminded me of the difference between how laggards and leaders approach their peers and business leaders when it comes to adopting predictive analytics.

The Laggards and the Leaders

In the first example, the head of analytics for a Fortune® 500 entertainment company was frustrated by his Chief Marketing Officer's desire to "understand" his models. The analytics leader lamented that his boss will never “get" his model, since he wasn't a trained expert in modeling and statistics.

To him, predictive modeling was a complex and sophisticated pursuit that only those with the highest training and experience could grasp. What he failed to realize was that the CMO wanted to believe the model, not understand it. His failure to gain the CMO’s trust has led to his models sitting on the shelf to this day and has limited his organization's adoption of predictive modeling.

In contrast, a global-integrated supply-chain company was being challenged by its client on the accuracy of its forecasts. The client, an international fast-food retailer, was relying on its supply-chain partner for daily and weekly demand forecasts to optimize inventory at each restaurant. Instead of addressing the forecast error statistically, the modeler took a different approach. He took different items, such as hamburger patties, potatoes, etc., and translated the average error rates into actual orders or units of inventory. In other words, if patties can only be purchased in packages of 10 with 10 packages per case, he calculated the percentage of time when the forecast was off enough to order more or fewer cases.

By defining the model's performance in the language of the restaurant manager, rather than the language of the statistician, the modeler was able to show that the error was rarely large enough to change the number of cases ordered. The restaurant managers have now become advocates for the modeling solution in the field.

The Art of Predictive Analytics Persuasion

As these two examples illustrate, while there is much science behind what we do as analysts, there is an art to getting your organization to change its decision-making process. Whether you’re using traditional regression techniques or the latest machine-learning algorithms, there are some simple rules to keep in mind when adopting predictive analytics.

I call these rules of thumb the three “R-s” of predictive analytics -- Reliable, Repeatable, Relatable.


Reliable refers to the accuracy of your predictive model. A predictive model doesn't have to be perfect, but needs to be accurate enough to have a business impact. The art of analytics is knowing when a model is “good enough,” so you don’t burn cycles searching for perfection.