Web analytics has become increasingly mainstream. And with advent of web events vs. pages, video analytics and now the surge of mobile content metrics, the field has become a rather complex one. I'm sitting in the one of the many workshops kicking off the JBoye 2008 conference here in Arhus, Denmark. Our fearless leader this morning is Phil Kemelor, a rather Zen-like fellow who's quite the web analytics guru and also the author of The CMS Watch Web Analytics Report. Our objective today? We're going to trim some noise from the analytics fray and focus on how to make the practice of web analysis function more effectively. Come along for the ride.The jboye08 event is unique on the conference track for two reasons. One, it's got a unique focus on content, content management technologies and modern information management issues. Secondly, the event is intensely focused on and led by some of the star practitioners in the space. In short, the conference is a knowledge heavy event which delivers a lot of value.

Current Web Analytics Challenges

The successful implementation and execution of web analytics programs is challenging, especially in larger organizations. Web analytics success depends strongly on clearly defined business goals and because many organizations lack a clearly defined web strategy with clearly defined business goals, web analytics programs often suffer. This is an ongoing issue at the business level. Some common problems Phil sees are: * Management doesn't want people to spend time on web analytics * Management tends to think: purchase, install and read reports (aka analytics is magic) * The discipline is rarely a dedicated operation -- it's a part time gig in many orgs * Many practitioners are still struggling to make the business case

Concrete vs. Magic with Analytics

The perception that web analytics work by magic is prolific and problematic. Combating this need not be difficult, but some internal education is usually necessary. The following list of tasks is a solid way to start a web analysis project: # Collect business requirements # Define metrics and methods of collection # Find or make data available (e.g., coding tags, systems integration, etc.) # Calculating metrics -- development of models # Build reports and conduct analysis # Educate stakeholders as to how to use the resulting analysis

Wise Use of Web Traffic Reports

Traffic Data Needs Context

Traffic reporting is not always useful, nor is it always wise to distribute such reports. When used well, traffic reporting provides snapshot views of important website activity. These reports serve to answer the question "how is the site doing" at a glance. But traffic data has a context and that context is the previously defined web business goals. So for such reports to be useful one needs to provide as much context as possible: What are the goals? Which higher numbers are better? Which lower numbers are better? What does the vocabulary mean? Etc.

Big Numbers are Not Always Good

High traffic numbers are not necessarily a sign of success. If you're running a portal and have 1.25 pages per visitor session, this could be a sign of success -- users might be finding exactly what they need, quickly. But if you're running a publishing site, then seeing 4 page views per visit would be a tremendous success -- users are discovering interesting content and continuing to read and interact with the website. Context is essential. Distributing traffic data without supporting contextual information can be worse than meaningless, it can distract from core business goals. Many traffic reports require deeper analysis to understand the implications.

Traffic Reporting is Not Analysis

For web analysis professionals, it's important to differentiate (in the mind of the report consumers) the difference between web traffic reporting and web analytics reporting. And it's important also to have good reasons, e.g., business goals, for distributing traffic reports. Web analytics analysis typically goes far beyond traffic reporting and provides answers only available by drilling down into traffic reports integrating more sophisticated business data. For example, with a "Top 10 Search Terms (internal)" report, one very often wants to know what happened after the search was executed -- ...was the content found? ...was there an exit event? ...what happened next?

Analytics Dashboards Are Over Rated

Following from the discussion of web traffic reporting, Phil took a few swings at the use of web analytics dashboards. Like traffic reports, the point was made that dashboards often fail to be useful in terms of making business decisions. Dashboards tend to suffer from the following problems: * They don't often contain a proper explanation of use * Context tends not to be explained well * Reports get "thrown over the wall" without discussion or follow-up * Baselines and goals may not be present * They often are more about traffic than business activities So what's the answer? Identifying the stakeholders, understanding both their business interests and the way they consume information, and then delivering specialized reporting and/or data that fits them. One size fits all reporting can be self-defeating.

Doing Web Analytics Better

By focusing on business goals, patterns and needs for information consumption, and deeper analysis, web analytics projects can deliver enormous value. Phil provided some guidance for how to succeed.

7 Business Questions Analytics Can Address

Keeping a focus on business questions is the foundation of a successful web analytics process. Some examples of these are: # What gets funded? # Which content or functional areas to deploy/fund human resources? # What projects to prioritize? # When is it time to redesign? # When to change content? # What navigation elements are working? # What search terms to purchase?

5 Questions for Web Analysts

When web analysts strive to refine their practice, Phil proposes that they ask these questions of themselves: # Who should be seeing raw data versus the resulting analysis? # When should we be analyzing versus reporting versus performing calculations on data? # How should we be presenting data and analysis to the different stakeholders? # What what data do we need to analyze? # Why are we analyzing this data? # Are we analyzing the key financial metrics (money talks at all levels)?

Explorative Web Analysis is a Must Have

Explorative web analysis is the process of understanding how people interact with a website or application. Our presenter today asserts that this level of analysis is key to the business value of web analytics. This form of analysis, according to Phil, involves drilling down on data sets to a level of detail that goes beyond standard traffic reports. He states that typical analytics tools -- such as Omniture, WebTrends, Unica, Nedstat and Google Analytics -- may be adequate for this, but there are also often cases where one will need to access and manipulate raw data. This type of analysis involves activities like: * Answering many of the typical questions raised by traffic reports * Segmenting visitor activity to better understand the performance of content and the results of marketing campaigns * Painting more rich pictures of how users are interacting with applications, content and navigation

Typical Explorative Analysis Exercises

General - All Types of Sites

Some broadly applicable explorative analysis operations include: * Homepage analysis (e.g., content placement optimization) * Internal search analysis (e.g., assess search usage and usability, identify ways to monetize search) * Funnel and workflow analysis (e.g., identify fall out points and recommend process changes) * Landing page analysis (e.g., analyze effectiveness of entry points with regards to moving visitors to and through key action funnels)

For Publishers

Online publishers have specialized needs. They are focused on driving visitors into specific content hotspots and optimizing the monetization of their content. Phil highlighted a few exploration examples for publishing contexts: * Ad real-estate analysis -- identifying the best locations for ads to be placed on a page * Functional analysis -- categorizing key site areas by function and create baseline measurements of each functional area * SEO analysis -- examine site entrances and site path behaviors segmented by key phrases

Summary

Phil wrapped up his workshop with 10 key takeaways for web analysts: # Web analytics must address real business issues # All web analytics reports must communicate something of value # To be truly effective, web analysis must be part of an established and accepted organizational process # One report does not fit all requirements # Report stakeholders are individuals and how they consume analytics is not solely dependent on job title # Basic traffic reports may generate more questions than they answer # Traffic reports that combine trends and causes take more work, but tell a better story # Money metrics are not only for commerce sites # Exploratory analysis is an absolute requirement for understanding visitor behavior # All reporting and analysis requires explanation to be understood

About Phil Kemelor

Phil is Vice President for Strategic Consulting Services with Semphonic, one of the largest vendor neutral web analytics consulting firms in the US. He is the lead analyst for The CMS Watch Web Analytics Report, a semi-annual evaluation of web analytics software vendors and the author of The Executive’s Guide to Web Site Measurement and Testing.