I got a sinking feeling when I read a recent article entitled Why the Timing is Right for Knowledge Management Portals

"Been there, done that" — a reaction both to the idea of resurrecting the failed portal concept and to the thought that respectable folks still see knowledge as manageable, in this, the Internet era, when facts, opinions and expertise move at light speed.

Not the Whole Story

There's little exciting in KM as it has long (although serviceably) been defined, as the industry has long conceived it.

Industry's idea is that an enterprise can beneficially manage knowledge by a) storing and organizing documents and providing a search function and b) cataloging employee abilities and facilitating collaboration. This approach works for some, but in my view, it delivers half-truths.

It ignores the information inside documents. It ignores enterprise-relevant knowledge and expertise that resides outside an organization's boundaries, out in the wild-and-wooly online and social universe.

It largely ignores the social voice of the customer, business partner (and competitor) information, the wisdom of communities of practice and industry authorities, and the like.

KM's short-comings aren't going to be overcome solely, or primarily, by better data hygiene or consistent approaches to applying metadata, or by putting a new face -- a reworked portal -- on the same old searchable document sets. What's needed?

A NewKM Need

My view: It's time to bring knowledge to knowledge management, via:

  1. Analytics, specifically, exhaustive information extraction (and not just searchable documents) and then data mining to identify links and associations; 
  2. An end to artificial boundaries, to neglect of extra-mural information; 
  3. Purpose-driven, ad-hoc communities and collaboration (and not just rosters of experts); and 
  4. Actual facts and connections, as captured in social and knowledge graphs.

Information extraction (IE) is the resolution of entities, pattern-based information such as events, topics, concepts, sentiment, and relationships of interest within source media, whether text, images, audio, or video.

IE may involve structural, statistical, and machine learning (ML) methods, that is machine intelligence or AI. Whatever the method applied, the aim is to discover relevant data wherever it occurs.

The graphs I'm referring to are network and property graphs, data structures that capture entities of interest — whether people, places and organizations or products, components and parts or something else — and their attributes and interconnections, as nodes, annotations and edges.

Two Paths

Seth Earley, whose portal article I cited (and who is a CMSWire contributor), is deservedly a recognized information-management authority. His views and mine do align to an extent, judging from a concluding line in his article.

He observes that "organizations are weighed down with legacy technologies" and that access difficulty stems primarily from "the underlying structures of corporate content and data."

He expects that "knowledge management portals will continue to evolve with machine learning, natural language processing (NLP) and social collaboration integration."

Replace "management portals" in that sentence and you're golden. It's knowledge we should focus on!

In other words, knowledge discovery will continue to evolve with machine learning (ML), natural language processing (NLP) and social collaboration integration.

As for portals as an access mechanism, they will remain a choke-point, given all the enterprise-relevant information they can't get at. And while the tired document-centered data structures that sit behind KM portals will become more flexible via ML, NLP and collaboration, what you get out of them will continue to be records rather than knowledge.

google screenshot
Knowledge — search-retrieved, interrelated facts — as captured in Google's Knowledge Graph

Some Get It - Somewhat - and Some Don't

Judging from the agenda of last November's KMWorld conference (where I spent a day), the broad KM community — unlike Seth Earley — largely doesn't get analytics, openness, network or knowledge bases.

The KM community seems largely inward focused, ignorant of the applicability to KM of the machine intelligence innovations discussed above, which not incidentally have long-since be proven by Google, Facebook, IBM and a host of providers in the semantic space, as well as by businesses applying them in customer experience, consumer insights, social/media analysis, life sciences and a spectrum of other initiatives.

But fortunately there are KM exceptions. For one, Safeharbor Knowledge Solutions, which I learned about via a Brainspace blog article. It differentiates document management and (true) knowledge management, explaining:

"A knowledge base is not just a document repository – it’s a body of knowledge that is continuously evolving. Knowledge consists of answers shared by experts, information hidden away in emails, ideas and feedback found in article comments and community forum discussions. A knowledge base application is designed to capture knowledge as it’s created and make it easy to find."

So that's my ingredient No. 4, above.

While Brainspace isn't positioned as a KM provider — text analytics forms the core of their product line — the blog article I mentioned relates to KM: The Key to Knowledge Management and Innovation is Knowledge Flow, Part 1.

Brainspace's Flow concept extends to external market intelligence and enterprise social networks so let's award Brainspace half a point on ingredient No. 2.

Brainspace gets more points for pointing us to another article, Build Better Knowledge Management by CMSWire Contributor Christian Buckley, a long-time KM industry participant. Buckley writes,

"The problem with knowledge management (KM) is... a user experience that fails to align the needs of the complex, non-linear playback mechanisms of the human brain with our systems of record... To build the next generation KM platform, we need solutions that can:

  • Improve the distribution of knowledge and ideas, quickly and seamlessly
  • Automatically identify patterns and themes within that content
  • Expand upon, refine and convert that knowledge based on those patterns, and in context to our requirements, ultimately making it searchable (i.e. findable)
  • Correlate those patterns and themes, and take appropriate action -- with those actions also tracked and measured, as an extension of the ideas"

Brainspace's Brandon Gadoci writes, however, that "Buckley is speaking wishfully. Most companies have no such platform."

True, and that's a challenge and an opportunity, to bring knowledge — patterns and themes, refined, findable, supporting action — to knowledge management. What portal is going to, per Christian Buckley, "improve the distribution of knowledge and ideas, quickly and seamlessly"?

But all the same, none of this KM-insider evangelism breaks out of the enterprise-as-knowledge-island KM self-limitation. For that, we should seek truly new elements in ...

A New KM Agenda

The agenda that will advance KM involves analytics and information extraction — bridging boundaries, crossing into the online and social world  — and an admission that records and documents are merely contains and that searchability does not constitute knowledge.

The tech to support this agenda is out there, freely available and quite capable, flexible and performant. So a New KM agenda would have to start with the realization that a closed mindset — records as closed books and needless barriers — hinders knowledge management. Extract knowledge from documents.

Structure it for query and analysis and not just retrieval. Work, collaboratively, across corporate boundaries. And find the knowledge in knowledge management.

For More Information: